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ABSTRACT: Infectious microbes trigger a dynamic response of the immune system, in which potent ially 

uncontrolled growth of the invader (or pathogen) is countered by various protective mechanisms. Initially, the 
innate immune system provides a non-specific tactical response, killing what pathogen it can, inducing 
inflammation and vasodilatation that aids the defense, causing blood coagulation that slows the spread of 

infection to other parts of the body, and raising the alarm for more complete response. In the process, a humoral 
response is initiated, signaling the presence of extra cellular “non-self‟ organisms and activating B cells to 

become plasma cells that are specific to the intruders‟ antigens.  
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INTRODUCTION 

              Many models of immune response to infection have been postulated [1–9], with recent emphasis on the 
human-immunodeficiency virus [10–15]. Norbert Wiener and Richard Bellman appreciated and anticipated the 
application of mathematical analysis to treatment in a broad sense [16, 17], and Swan surveyed early optimal 

control applications to biomedical problems in [18–20]. Optimal control theory was postulated as an organizing 
principle for natural immune system behavior in [21–24], and it is applied to HIV treatment in [25, 26].In the 

remainder, we consider therapy that enhances humoral immune response to a pathogen, such as a toxin or 
extracellular bacterium. The options available for clinical treatment of the infection are to kill the invading 
microbes, to neutralize their harmful effects, to enhance the efficacy of immune response, to provide healing 

care to organs that are damaged by the microbes, or to employ some combination of therapies.  
In prior studies, we examined remedial treatments with differing hypotheses about the initial pathogen 

concentration. If the initial concentration is known precisely [1], the optimizing control history maximizes 
efficacy of the drug while minimizing its side effects and cost. For the second study [2], a feedback strategy 
based on a linear perturbation model of response dynamics is derived to account for variations induced by 

unknown initial infection. The therapy is modified as a function of the difference between the optimal and 
observed dynamic states over the entire treatment period, assuming that the difference is measured without 

error.  
 

EVOLUTIONARY COMPUTING: GENETIC ALGORITHMS & MULTI-OBJECTIVE GENETIC 

ALGORITHMS 

                The concept of GA was developed by Holland and his colleagues in the 1960s and 1970s [12]. GA are 

inspired by the evolutionist theory explaining the origin of species. In nature, weak and unfit species within 
their environment are faced with loss by natural selection. The strong ones have greater opportunity to pass their 
genes to future generations via reproduction. In the long run, species carrying the correct combination in their 

genes become dominant in their population. Sometimes, during the slow process of evolution, random changes 
may occur in genes. If these changes provide additional advantages in the challenge for survival, new species 
evolve from the old ones. Unsuccessful changes are eliminated by natural selection. In a population-based 
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approach, GA are one of the best tool to solve multi-objective optimization problems.  

A generic single-objective GA can be modified to find a set of multiple non-dominated solutions in a single run. 
The ability of GA to simultaneously search different regions of a solution space makes it possible to find a 
diverse set of solutions for difficult problems with non-convex, discontinuous, and multi-modal solutions 

spaces. The crossover operator of GA may exploit structures of good solutions with respect to different 
objectives to create new non-dominated solutions in unexplored parts of the Pareto front. In addition, most 

multi-objective GA do not require the user to prioritize, scale, or weigh objectives. Therefore, GA have been the 
most popular heuristic approach to multi-objective design and optimization problems.  
 

MATHEMATICAL MODELING OF IMMUNE SYSTEM RESPONSE 

               We are considering here, the mathematical model as employed in [1, 2] which is the idealize model of 

a generic humoral immune response. The model consisting of four components: the concentration of a foreign 
pathogen (y1), concentration of plasma cells (y2), concentration of antibodies that bind to the antigen (y3) and a 
measure of the health of an organ (y4) that may be damaged in infection attack. The model presented in [1, 2] 

has not been accounted for therapy. We have modified the original model by adding active and passive 

immunotherapeutic control agents, i  (Active immunotherapy strengthens natural immune response, as by 

enhancing plasma cell and antibody production, while passive immunotherapy addresses the effects of infection 

directly, as in killing the pathogen or healing the infected organ) and an exogenous input, i , to the model: 

pathogen killer (
1 ), plasma cell booster (

2 ), antibody booster ( 3 ), and organ healing booster (
4 ). The 

dynamic system can be represented by the following set of ordinary differential equations:  
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Figure 1.1: Pathogen and antibody response on microbial attack  

Figure 1.1 shows typical uncontrolled response to increasing levels of pathogen concentration at the start of the 
time domain. We may assume some initial period of microbial infection and growth prior to beginning the 

simulated immune response at zero time. 
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1.3 STOCHASTIC OPTIMAL THERAPEUTIC CONTROL MODEL & ITS SOLUTION WITH GA 

               The optimal therapeutic protocol is derived by minimizing a treatment cost function, TH that punishes 
large values of pathogen concentration, poor organ health, and excessive application of therapeutic agents. This 

multi-objective, positive-definite scalar cost function of many variables allows tradeoffs between important 
factors to be adjusted through the relative weighting of individual components.  Systematic responses tend to 

reinforce each other while conflicting responses compete in the development of an optimal regimen. The cost 
function is evaluated over the fixed time interval [ti, tf] and can be given as, 

dtucucucucybybyayayTH
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The cost- function elements are squared to amplify the effects of large variations and to de-emphasize 
contributions of small variations. Each squared element is multiplied by a coefficient (aii, bii, or cii) that 

establishes the relative importance of the factor in the treatment cost. These coefficients could reflect financial 
cost of treatment, or they could represent physiological „cost‟ such as virulence, toxicity, or discomfort. The 
resulting treatment protocol balances speed, efficacy, and cost of treatment against implicit side effects.  

Being a population-based approach, GA are well suited to solve multi-objective optimization problems. The 
classical approach to solve a multi-objective optimization problem is to assign a weight wi  to each normalized 

objective function THi (y) so that the problem is converted to a single objective problem with a scalar objective 
function as follows, 

)(....................)()()()(min 332211 yHTwyHTwyHTwyHTwyTH kk

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where )(yHT i
  the is the normalized objective function )(yTH i and 1 iw . This approach is called the priori 

approach since the user is expected to provide the weights. Solving a problem with the objective function (1.7) 

for a given weight vector },.......,,,{ 321 kwwwww  yields a single solution, and if multiple solutions are desired, 

the problem must be solved multiple times with different weight combinations. The main difficulty with this 

approach is selecting a weight vector for each run. To automate this process; Hajela and Lin [12] proposed the 
WBGA for multi-objective optimization (WBGA-MO) in the WBGA-MO, each solution yi in the population 

uses a different weight vector },.......,,,{ 321 kwwwww  in the calculation of the summed objective function (6). 

The weight vector wi is embedded within the chromosome of solution yi. Therefore, multiple solutions can be 

simultaneously searched in a single run. In addition, weight vectors can be adjusted to promote diversity of the 
population. 

PROCEDURE RWGA: 

E =external archive to store non-dominated solutions found during the search so far; 
 nE = number of elitist solutions immigrating from E to P in each generation.  

 Step 1: Generate a random population.  

Step 2: Assign a fitness value to each solution tPy  by performing the following steps: 

Step 2.1: Generate a random number uk in [0,1] for each objective k, k =1,…..,K. 

Step 2.2: Calculate the random weight of each objective k as 

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Step 2.3: Calculate the fitness of the solution as 

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Step 3: Calculate the selection probability of each solution tPy  as follows:  
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Step 4: Select parents using the selection probabilities calculated in Step 3. Apply crossover on the selected 
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parent pairs to create N offspring. Mutate offspring with a predefined mutation rate. Copy all offspring to 

Pt+1.Update E if necessary. 
Step 5: Randomly remove nE solutions from Pt+1 and add the same number of solutions from E  

to Pt+1. 

Step 6: If the stopping condition is not satisfied, set t =t + 1 and go to Step 2. Otherwise, return to E. 
The main advantage of the weighted sum approach is a straightforward implementation. Since a single objective 

is used in fitness assignment, a single objective GA can be used with minimum modifications. In addition, this 
approach is computationally efficient. The main disadvantage of this approach is that not all Pareto-optimal 
solutions can be investigated when the true Pareto front is non-convex. 

  
CONCLUSION 

              The model presented here having active and passive immunotherapeutic control age nts, and pathogen 
killer, plasma cell booster, antibody booster, and organ healing booster to model enhanced immune system 
response. For a strong enough attack, the combination of immune response and nominal therapy is insufficient, 

and the pathogen grows without bound, killing the organ. The therapeutic protocol must be adjusted to 
accommodate the change, either through continued reevaluation of the stochastic optimal policy or through a 

simpler mechanism for modifying the policy in proportion to deviations from the expected response history.  
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